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We introduce and study in some detail the properties of a novel class of Weyl-conformally invariant
p-brane theories which describe intrinsically lightlike branes for any odd world-volume dimension. Their
dynamics significantly differs from that of the ordinary (conformally noninvariant) Nambu-Goto p branes.
We present explicit solutions of the Weyl-invariant lightlike brane- (WILL-brane) equations of motion in
various gravitational models of physical relevance exhibiting various new phenomena. In D � 4 the
WILL membrane serves as a material and charged source for gravity and electromagnetism in the coupled
Einstein-Maxwell-WILL-membrane system; it automatically positions itself on (straddles) the common
event horizon of the corresponding matching black hole solutions, thus providing an explicit dynamical
realization of the membrane paradigm in black hole physics. In product spaces of interest in Kaluza-Klein
theories the WILL-brane wraps nontrivially around the compact (internal) dimensions and still describes
massless mode dynamics in the noncompact (space-time) dimensions. Because of nontrivial variable size
of the internal compact dimensions we find new types of physically interesting solutions describing
massless brane modes trapped on bounded planar circular orbits with nontrivial angular momentum, and
with linear dependence between energy and angular momentum.
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I. INTRODUCTION

In the recent years there has been a considerable interest
in the study of higher-dimensional extended objects moti-
vated by various developments in string theory, gravity,
astrophysics and cosmology.

In nonperturbative string theory there arise several types
of higher-dimensional membranes (p branes, Dp branes)
which play a crucial role in the description of string dual-
ities, microscopic physics of black holes, gauge theory/
gravity correspondence, large-radius compactifications of
extra dimensions, cosmological brane-world scenarios in
high-energy particle phenomenology, etc. (for a back-
ground on string and brane theories, see Refs. [1]).

In the context of black hole physics, the so called
‘‘membrane paradigm’’ [2] appears to be a quite effective
treatment of the physics of a black hole horizon.
Furthermore, the thin-wall description of domain walls
coupled to gravity [3,4] is able to provide neat models
for many cosmological and astrophysical effects.

It seems therefore of fundamental importance that all
kinds of higher-dimensional extended objects, which could
be consistently formulated, and their possible role in the
various areas of physics should be thoroughly investigated.
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Lightlike membranes are indeed of great importance in
general relativity and have been extensively studied from a
phenomenological point of view [3,4], i.e., by introducing
them without specifying the Lagrangian dynamics from
which they may originate. These lightlike membranes have
been treated as a source of gravity enabling the formulation
of important effects in the context of black hole physics.

In the present paper we develop in some detail a new
field-theoretic approach for a systematic description of
the dynamics of lightlike p branes starting from a concise
Weyl-conformally invariant action. Part of the results
have been previously reported in shorter form in
Refs. [5]. Our approach is based on the general idea of
employing alternative non-Riemannian integration mea-
sures (volume forms) in the actions of generally-covariant
(reparametrization-invariant) field theories instead of
(or, more generally, on equal footing with) the standard
Riemannian volume forms. This idea has been first
proposed and applied in the context of four-dimensional
theories involving gravity [6] by introducing a new class
of ‘‘two-measure’’ gravitational models. It has been dem-
onstrated that the latter models are capable to provide
plausible solutions for a broad array of basic problems
in cosmology and particle physics, such as: (i) scale
invariance and its dynamical breakdown; (ii) spontan-
eous generation of dimensionful fundamental scales; (iii)
the cosmological-constant problem; (iv) the problem
of fermionic families; (v) applications to dark energy
problem and modern cosmological brane-world scenarios.
-1 © 2005 The American Physical Society
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For a detailed discussion we refer to the series of papers
[6,7].

Subsequently, the idea of employing an alternative non-
Riemannian integration measure was applied systemati-
cally to string, p-brane and Dp-brane models [8]. The
main feature of these new classes of modified string/brane
theories is the appearance of the pertinent string/brane
tension as an additional dynamical degree of freedom
beyond the usual string/brane physical degrees of freedom,
instead of being introduced ad hoc as a dimensionful scale.
The dynamical string/brane tension acquires the physical
meaning of a world-sheet electric field strength (in the
string case) or world-volume �p� 1�-form field strength
(in the p-brane case) and obeys Maxwell (Yang-Mills)
equations of motion or their higher-rank antisymmetric
tensor gauge field analogues, respectively. As a result of
the latter property the modified-measure string model with
dynamical tension yields a simple classical mechanism of
‘‘color’’ charge confinement [8].

One drawback of modified-measure p-brane and
Dp-brane models, similarly to a drawback of ordinary
Nambu-Goto p-branes, is that Weyl-conformal invariance
is lost beyond the simplest string case (p � 1). On the
other hand, it turns out that the form of the action of the
modified-measure string model with dynamical tension
suggests a natural way to construct explicitly a substan-
tially new class of Weyl-conformally invariant p-brane
models for any p [5]. The most profound property of the
latter models is that for any even p they describe the
dynamics of inherently lightlike p branes which makes
them significantly different both from the standard
Nambu-Goto (or Dirac-Born-Infeld) branes as well as
from their modified versions with dynamical string/brane
tensions [8] mentioned above.

Let us note that various papers have previously appeared
in the literature [9] where the standard Weyl-conformally
noninvariant Nambu-Goto p-brane action (Eq. (8) below)
and its supersymmetric counterparts were reformulated in
a formally Weyl-invariant form by means of introducing
auxiliary nondynamical fields with a nontrivial transfor-
mation properties under Weyl-conformal symmetry appro-
priately tuned up to compensate for the Weyl
noninvariance with respect to (w.r.t.) the original dynami-
cal degrees of freedom. However, one immediately ob-
serves that the latter formally Weyl-invariant p-brane
actions do not change the dynamical content of the stan-
dard Nambu-Goto p-branes (describing inherently massive
modes). This is in sharp contrast to the new Weyl-
conformally invariant p-brane models introduced and
studied in detail below, which describe intrinsically light-
like p branes for any even p. In what follows we will use
for the latter the acronym Weyl-invariant lightlike-
(WILL)-branes.

In the present paper we will demonstrate that WILL
branes can play a very interesting role in diverse areas of
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physics. We begin with a short review of the concept of
alternative non-Riemannian volume form (integration
measure) in the context of string and p-brane models
(Section II). In Sec. III, after a brief reminder of the
standard Polyakov-type formulation of ordinary Nambu-
Goto p-branes, we introduce and describe the Lagrangian
formulation of the new class of inherently Weyl-invariant p
branes for any p and exhibit their intrinsic lightlike nature
when p is even (WILL branes). In Sec. IV and forward we
study in detail the properties of WILL membranes (i.e., for
p � 2), in particular, we introduce a natural coupling of
the WILL membrane to external space-time electromag-
netic fields.

The role of WILL membranes in the context of gravity is
discussed in Secs. V and VI. When moving as a test brane
in a D � 4 black hole gravitational background the WILL
membrane (p � 2) automatically locates itself on the event
horizon (Sec. V). Furthermore, as shown in Sec. VI, the
WILL membrane can serve as a material and charged
source for gravity and electromagnetism in the coupled
Einstein-Maxwell-WILL-membrane system. We derive a
self-consistent solution where the WILL membrane locates
itself on (‘‘straddles’’) the common event horizon of two
black holes (Reissner-Nordström in the exterior and
Schwarzschild in the interior). Therefore, the WILL mem-
brane provides an explicit dynamical realization of the
membrane paradigm in black hole physics [2].

The role of WILL membranes in the context of Kaluza-
Klein theories is studied in Section VII where we consider
WILL-membrane dynamics in higher-dimensional
product-type space-time. It is shown that the WILL mem-
brane describes massless particlelike modes while acquir-
ing nontrivial Kaluza-Klein quantum numbers. When the
size of extra compact dimensions is constant the motion of
these massless brane modes is indistinguishable from that
of ordinary massless point particles w.r.t. the projected
D � 4 world. An interesting new feature arises when the
size of the extra compact dimensions has nontrivial space
dependence. In this case we find an explicit solution de-
scribing massless particlelike brane mode motion on the
noncompact D � 4 space-time, where the modes are
trapped on bounded planar circular orbits with a linear
relation between energy and angular momentum, while
winding nontrivially the extra compact dimensions. The
latter feature is inaccessible in standard Kaluza-Klein
models.

The last section collects some conclusions and outlook
for future studies of the role and further aspects of WILL-
brane dynamics.
II. STRING AND BRANE MODELS WITH A
MODIFIED WORLD-SHEET/WORLD-VOLUME

INTEGRATION MEASURE

The modified-measure bosonic string model is given by
the following action [8]:
-2
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S � �
Z
d2���’�

�
1

2
�ab@aX�@bX�G���X�

�
"ab

2
��������
��
p Fab�A�

�
�
Z
d2�

��������
��
p

AaJa;

Ja �
"ab��������
��
p @bu;

(1)

with the notations:

��’� �
1

2
"ij"ab@a’i@b’j; Fab�A� � @aAb � @bAa:

(2)

Here ’i denote auxiliary world-sheet scalar fields, �ab
indicates the intrinsic Riemannian world-sheet metric
with � � detk�abk and G���X� is the Riemannian metric
of the embedding space-time (a; b � 0; 1; i; j �
1; 2;�; � � 0; 1; . . . ; D� 1).

In action [8] we notice the following differences w.r.t.
the standard Nambu-Goto string (in the Polyakov-like for-
mulation):
(a) N
ew non-Riemannian integration measure density
��’� instead of

��������
��
p

;

(b) D
ynamical string tension T � ��’�������

��
p instead of ad hoc

dimensionful constant;

(c) A
uxiliary world-sheet gauge field Aa in a would-be

‘‘topological’’ term
R
d2���’�������

��
p 1

2"
abFab�A�;
(d) O
ptional natural coupling of auxiliary Aa to external
conserved world-sheet electric current Ja (see last
equality in [8] and Eq. (4) below).
The modified string model [8] is Weyl-conformally
invariant similarly to the standard Polyakov formulation.
Here Weyl-conformal symmetry is given by Weyl rescal-
ing of �ab supplemented with a special diffeomorphism in
’-target space:

�ab ���! �0ab � ��ab;

’i ���! ’0i � ’0i�’� with det

�����@’0i@’j

������ �:
(3)

The dynamical string tension appears as a canonically
conjugated momentum w.r.t. A1: �A1

� @L
@ _A1
� ��’�������

��
p � T,

i.e., T has the meaning of a world-sheet electric field
strength, and the equations of motion w.r.t. auxiliary gauge
field Aa look exactly as D � 2 Maxwell equations:

"ab��������
��
p @bT � Ja � 0: (4)

In particular, for Ja � 0 :

"ab@b

�
��’���������
��
p

�
� 0;

��’���������
��
p � T � const.; (5)

one gets a spontaneously induced constant string tension.
Furthermore, when the modified string couples to pointlike
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charges on the world-sheet (i.e., J0 ��������
��
p

�
P
iei���� �i�

in (4)) one obtains classical charge confinement:
P
iei � 0.

The above charge confinement mechanism has also been
generalized in [8] to the case of coupling the modified
string model (with dynamical tension) to non-Abelian
world-sheet color charges. The latter is achieved as fol-
lows. Notice the following identity in 2D involving
Abelian gauge field Aa:

"ab

2
��������
��
p Fab�A� �

���������������������������������������������������
�

1

2
Fab�A�Fcd�A��

ac�bd
s

: (6)

Using (6) the extension of the action [8] to the non-Abelian
case is straightforward:

S � �
Z
d2���’��

1

2
�ab@aX

�@bX
�G���X�

�

������������������������������������������������������������
�

1

2
Tr�Fab�A�Fcd�A���

ac�bd
s

�

�
Z
d2�Tr�Aaj

a�; (7)

with Fab�A� � @aAb � @bAc � i�Aa; Ab�. The model (7)
shares the same principal properties as the model (1)—
dynamical generation of string tension as an additional
degree of freedom, non-Abelian color charge confinement
already on the classical level, etc.

Similar construction has also been proposed in [8] for
higher-dimensional modified-measure p- and Dp-brane
models whose brane tension appears as an additional dy-
namical degree of freedom. On the other hand, like the
standard Nambu-Goto branes, they are Weyl-conformally
noninvariant and describe dynamics of massive modes.
III. WEYL-INVARIANT BRANES

A. Standard Nambu-Goto branes

Before proceeding to the main exposition, let us briefly
recall the standard Polyakov-type formulation of the ordi-
nary (bosonic) Nambu-Goto p-brane action:

S � �
T
2

Z
dp�1�

��������
��
p

��ab@aX�@bX�G���X�

���p� 1��: (8)

Here �ab is the ordinary Riemannian metric on the p�
1-dimensional brane world volume with � � detjj�abjj.
The world-volume indices a; b � 0; 1; . . . ; p ;G�� denotes
the Riemannian metric in the embedding space-time with
space-time indices �; � � 0; 1; . . . ; D� 1. T is the given
ad hoc brane tension; the constant � can be absorbed by
rescaling T (see below Eq. (14)). The equations of motion
w.r.t. �ab and X� read
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Tab �
�
@aX�@bX� �

1

2
�ab�cd@cX�@dX�

�
G��

� �ab
�

2
�p� 1� � 0; (9)

@a�
��������
��
p

�ab@bX
�� �

��������
��
p

�ab@aX
�@bX

����� � 0; (10)

where

���� �
1

2
G�	�@�G	� � @�G	� � @	G��� (11)

is the Christoffel connection for the external metric.
Equations (9) when p � 1 imply

��ab � @aX�@bX�G��; (12)

which in turn allows to rewrite Eq. (9) as

Tab �
�
@aX

�@bX
� �

1

p� 1
�ab�

cd@cX
�@dX

�
�
G�� � 0:

(13)

Furthermore, using (12) the Polyakov-type brane action (8)
becomes on-shell equivalent to the Nambu-Goto-type
brane action:

S � �T����p�1�=2�
Z
dp�1�

�������������������������������������������������
� detjj@aX�@bX�G��jj

q
:

(14)

Let us note the following properties of standard Nambu-
Goto p branes manifesting their crucial differences w.r.t.
the Weyl-conformally invariant branes discussed below.
Equation (12) tells us that: (i) the induced metric on the
Nambu-Goto p-brane world volume is nonsingular; (ii)
standard Nambu-Goto p branes describe intrinsically mas-
sive modes.

B. Weyl-invariant branes: action and equations
of motion

Identity (6) and the modified-measure string action (7)
naturally suggest how to construct Weyl-invariant p-brane
models for any p. Namely, we consider the following novel
class of p-brane actions:

S � �
Z
dp�1���’�

�
1

2
�ab@aX�@bX�G���X�

�
�������������������������������������������
Fab�A�Fcd�A��ac�bd

q �
; (15)

��’� �
1

�p� 1�!
"i1...ip�1

"a1...ap�1@a1
’i1 . . . @ap�1

’ip�1 ;

(16)

where notations similar to those in [8] are used (here
a; b � 0; 1; . . . ; p; i; j � 1; . . . ; p� 1). In particular, ’i

are world-volume scalar fields which are the building
blocks of the non-Riemannian integration measure (16).
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The above action (15) is invariant under Weyl-conformal
symmetry (the same as in the dynamical-tension string
model [8]):

�ab ���! �0ab � ��ab;

’i ���! ’0i � ’0i�’� with det

�����@’0i@’j

������ �:
(17)

Let us note the following significant differences of (15)
w.r.t. the standard Nambu-Goto p-branes (in the Polyakov-
like formulation):
(a) N
-4
ew non-Riemannian integration measure density
��’� instead of

��������
��
p

, and no ‘‘cosmological-
constant’’ term (�p� 1�

��������
��
p

);

(b) V
ariable brane tension 
 � ��’�������

��
p which is now Weyl-

conformally gauge dependent: 
! �
1
2�1�p�
;
(c) A
uxiliary world-volume gauge field Aa in a ‘‘-
square-root’’ Maxwell-type term1; the latter can be
straightforwardly generalized to the non-Abelian
case—

��������������������������������������������������������
�Tr�Fab�A�Fcd�A���ac�bd

p
similar to (7);
(d) N
atural optional couplings of the auxiliary gauge
field Aa to external world-volume color charge cur-
rents ja as in (7);
(e) T
he action (15) is manifestly Weyl-conformal in-
variant for any p; it describes intrinsically lightlike
p branes for any even p, as it will be shown below.
In what follows we shall frequently use the shorthand
notations:

�@aX@bX� � @aX�@bX�G��;��������������
FF��

p
�

������������������������������
FabFcd�

ac�bd
q

:
(18)

Employing (18) the equations of motion w.r.t. measure-
building auxiliary scalars ’i and w.r.t. �ab read, respec-
tively:

1

2
�cd�@cX@dX� �

��������������
FF��

p
� M�� const.�; (19)

1

2
�@aX@bX� �

Fac�
cdFdb��������������

FF��
p � 0: (20)

Taking the trace in (20) implies M � 0 in Eq. (19).
Next we have the following equations of motion w.r.t.

auxiliary gauge field Aa and w.r.t. X�, respectively:

@b

�
Fcd�

ac�bd��������������
FF��
p ��’�

�
� 0; (21)

@a���’��ab@bX�� ���’��ab@aX�@bX����� � 0; (22)
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where ���� is the Christoffel connection corresponding to
the external space-time metric G�� as in (11).

C. Intrinsically lightlike branes

Let us consider the �ab-equations of motion (20). Fab is
an antisymmetric �p� 1� 
 �p� 1�matrix, therefore, Fab
is not invertible in any odd �p� 1�—it has at least one
zero-eigenvalue vector Va (FabVb � 0). Therefore, for any
odd �p� 1� the induced metric:

gab � �@aX@bX� � @aX�@bX�G���X� (23)

on the world volume of the Weyl-invariant brane (15) is
singular as opposed to the ordinary Nambu-Goto brane
(where the induced metric is proportional to the intrinsic
Riemannian world-volume metric, cf. Equation (12)):

�@aX@bX�Vb � 0; i.e: �@VX@VX� � 0;

�@?X@VX� � 0;
(24)

where @V � Va@a and @? are derivatives along the tangent
vectors in the complement of the tangent vector field Va.

Thus, we arrive at the following important conclusion:
every point on the world surface of the Weyl-invariant p
brane (15) (for odd �p� 1�) moves with the speed of light
in a time evolution along the zero-eigenvalue vector-field
Va of Fab. Therefore, we will name (15) (for odd �p� 1�)
by the acronym WILL-brane model.

D. Dual formulation of WILL branes

The Aa equations of motion (21) can be solved in terms
of �p� 2�-form gauge potentials �a1...ap�2

dual w.r.t. Aa.
The respective field strengths are related as follows:

Fab�A� � �
1




��������
��
p

"abc1...cp�1

2�p� 1�
�c1d1 . . .�cp�1dp�1


 Fd1...dp�1
����cd�@cX@dX�; (25)


2��
2

�p�1�2
�a1b1 . . .�ap�1bp�1Fa1...ap�1

���Fb1...bp�1
���;

(26)

where 
 � ��’�������
��
p is the variable brane tension, and

Fa1...ap�1
��� � �p� 1�@�a1

�a2...ap�1�
(27)

is the �p� 1�-form dual field strength.
All equations of motion (19)–(22) can be equivalently

derived from the following dual WILL-brane action:

Sdual�X; �;�� � �
1

2

Z
dp�1�
��;��



��������
��
p

�ab@aX
�@bX

�G���X� (28)

with 
��;�� given in (26) above. In particular, in terms of
the dual gauge fields (27), (20), and (21) read
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�@aX@bX��
1

2
�cd�@cX@cX�

�
��ab��p�1�



�a1b1 . . .�ap�2bp�2Faa1...ap�2

���Fbb1...bp�2
���

�c1d1 . . .�cp�1dp�1Fc1...cp�1
���Fd1...dp�1

���

�
�0; (29)

@b

�
�a1b1 . . .�ap�2bp�2�bbp�1Fb1...bp�1

���
1


��;��



��������
��
p

�cd�@cX@cX�
�
� 0; (30)

with 
��;�� as in (26).
IV. SPECIAL CASE p � 2. COUPLING TO
EXTERNAL ELECTROMAGNETIC FIELD

A. WILL membrane

Henceforth we will explicitly consider the special case
p � 2 of (15) i.e., the Weyl-invariant lightlike membrane
model:

S � �
Z
d3���’�

�
1

2
�ab@aX

�@bX
�G���X�

�
�������������������������������������������
Fab�A�Fcd�A��

ac�bd
q �

; (31)

��’� �
1

3!
"ijk"abc@a’i@b’j@c’k;

a; b; c � 0; 1; 2; i; j; k � 1; 2; 3:
(32)

The associated WILL-membrane dual action (particular
case of (28) for p � 2) reads

Sdual � �
1

2

Z
d3�
��; u�

��������
��
p

�ab@aX�@bX�G���X�;


��; u� �
������������������������������
�2�cd@cu@du

q
; (33)

where u is the dual ‘‘gauge’’ potential w.r.t. Aa:

Fab�A� � �
1

2
��; u�
��������
��
p

"abc�
cd@du�

ef�@eX@fX�:

(34)

Sdual is manifestly Weyl invariant (under �ab ! ��ab).
The equations of motion w.r.t. �ab, u (or Aa), and X�

read accordingly (using again shorthand notation (23)) :

�@aX@bX� �
1

2
�cd�@cX@dX�

�
@au@bu

�ef@eu@fu
� �ab

�
� 0;

(35)

@a

� ��������
��
p

�ab@bu


��; u�
�cd�@cX@dX�

�
� 0; (36)
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@a�
��; u�
��������
��
p

�ab@bX
�� � 
��; u�



��������
��
p

�ab@aX�@bX����� � 0: (37)

Equation (35) represents the relation between the intrinsic
metric �ab and the induced metric �@aX@bX�. However, the
last factor in brackets on the l.h.s. of (35) is a projector
implying that the induced metric gab � �@aX@bX� has
zero-mode eigenvector Va � �ab@bu.

B. Gauge-fixed constraints and equations of motion

The invariance under world-volume reparametrizations
allows to introduce the following standard (synchronous)
gauge-fixing conditions:

�0i � 0 �i � 1; 2�; �00 � �1: (38)

Using (38) we can easily find solutions of Eq. (36) for the
dual ‘‘gauge potential’’ u in spite of its high nonlinearity by
taking the following ansatz:

u��; �1; �2� �
T0���

2
p �: (39)

Here T0 is an arbitrary integration constant with the di-
mension of membrane tension. In particular,


 �
������������������������������
�2�ab@au@bu

q
� T0: (40)

The ansatz (39) means that we take � � �0 to be evolution
parameter along the zero-eigenvalue vector field of the
induced metric on the brane (Va � �ab@bu �
const.�1; 0; 0�). Also, in terms of the original gauge field
Aa (cf. relation (34)) Eq. (39) implies vanishing of the
world-volume ‘‘electric’’ field strength F0i�A� � 0.

The ansatz for u (39) together with the gauge choice for
�ab (38) brings the equations of motion w.r.t. �ab, u (or Aa)
and X� in the following form (recall �@aX@bX� �
@aX�@bX�G��):

�@0X@0X� � 0; �@0X@iX� � 0; (41)

�@iX@jX� �
1

2
�ij�

kl�@kX@lX� � 0; (42)

(notice that Eqs. (42) look exactly like the classical
(Virasoro) constraints for an Euclidean string theory with
world-sheet parameters ��1; �2�);

@0�
��������
��2�
p

�kl�@kX@lX�� � 0; (43)

where ��2� � detk�ijk;

��3�X� � ��@0X
�@0X

� � �kl@kX
�@lX

������ � 0; (44)

where

��3� � �
1��������
��2�

q @0�
��������
��2�

q
@0� �

1��������
��2�

q @i�
��������
��2�

q
�ij@j�:

(45)
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Let us note that Eq. (43) is the only remnant from the
Aa-equations of motion (21) and, in fact, it can easily be
shown that (43) is a consequence of the gauge-fixed con-
straints (41) and (42) and equations of motion (44).

C. Coupling to external electromagnetic field

We can also extend the WILL-brane model (15) via a
coupling to external space-time electromagnetic field A�.
The natural Weyl-conformal invariant candidate action
reads (for p � 2):

SWILL�brane � �
Z
d3���’�

�
1

2
�ab@aX�@bX�G��

�
������������������������������
FabFcd�ac�bd

q �
� q

Z
d3�"abcA�@aX�Fbc: (46)

The last Chern-Simmons-like term is a special case of a
class of Chern-Simmons-like couplings of extended ob-
jects to external electromagnetic fields proposed in
Ref. [11].

Instead of the action (46) we can use its dual one (similar
to the simpler case Eq. (15) versus Eq. (33)):

Sdual
WILL�brane � �

1

2

Z
d3�
��; u;A�

��������
��
p

�ab�@aX@bX�;

(47)

where the variable brane tension 
 � ��’�������
��
p is given by


��; u;A� �
�����������������������������������������������������������������������
�2�cd�@cu� qAc��@du� qAd�

q
;

Aa �A�@aX
�:

(48)

Here u is the dual gauge potential w.r.t. Aa and the corre-
sponding field strength and dual field strength are related as
(cf. Equation (34)):

Fab�A� � �
1

2
��; u;A�



��������
��
p

"abc�cd�@du�Ad��ef�@eX@fX�: (49)

The corresponding equations of motion w.r.t. �ab, u (or
Aa), and X� read accordingly:

�@aX@bX� �
1

2
�cd�@cX@dX�




�
�@au� qAa��@bu� qAb�

�ef�@eu� qAe��@fu� qAf�
� �ab

�
� 0; (50)
-6
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@a

� ��������
��
p

�ab�@bu� qAb�


��; u;A�
�cd�@cX@dX�

�
� 0; (51)

@a�
��; u;A�
��������
��
p

�ab@bX�� � 
��; u;A�



��������
��
p

�ab@aX�@bX�����

� q"abcFbc@aX
��@�A� � @�A��G

�� � 0: (52)
V. WILL-MEMBRANE SOLUTIONS IN VARIOUS
GRAVITATIONAL BACKGROUNDS

A. Example: WILL membrane in a pp-wave
background

As a first nontrivial example let us consider WILL-
membrane dynamics in an external background generaliz-
ing the plane-polarized gravitational wave (pp wave):

�ds�2 � �dx�dx� � F�x�; xI��dx��2 � hIJ�xK�dxIdxJ;

(53)

(for the ordinary pp wave hIJ�xK� � �IJ), and let us
employ in (41)–(45) the following natural ansatz for X�

(here �0 � �; I � 1; . . . ; D� 2):

X� � �; X� � X���; �1; �2�; XI � XI��1; �2�:

(54)

The nonzero affine connection symbols for the generalized
pp-wave metric (53) are: ���� � @�F, ���I � @IF,
�I�� �

1
2h

IJ@JF, and �IJK—the ordinary Christoffel sym-
bols for the metric hIJ in the transverse dimensions.

It is straightforward to show that the solution does not
depend on the form of the pp-wave front F�x�; xI� and
reads

X� � X�0 � const.; �ij are �� independent;

(55)�
@iXI@jXJ �

1

2
�ij�kl@kXI@lXJ

�
hIJ � 0; (56)

1��������
��2�

q @i

� ��������
��2�

q
�ij@jX

I
�
� �kl@kX

J@lX
K�IJK � 0: (57)

The latter two equations for the transverse brane coordi-
nates describe a string moving in the �D� 2�-dimensional
Euclidean-signature transverse space.

B. Example: WILL membrane in spherically-
symmetric backgrounds

Let us consider general SO(3)-symmetric background in
D � 4 embedding space-time:

�ds�2 � �A�z; t��dt�2 � B�z; t��dz�2

� C�z; t���d��2 � sin2��d�2�: (58)
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The usual ansatz:

X0 � t � �; X1 � z � z��; �1; �2�;

X2 � � � �1; X3 �  � �2;

�ij � a�����d�1�2 � sin2��1��d�2�2�

(59)

yields:
(i) equations for z��; �1; �2�:

@z
@�
� �

����
A
B

s
;

@z
@�i
� 0; (60)

(ii) a restriction on the background itself (comes from
the gauge-fixed equations of motion for the dual gauge
potential u (43)) :

dC
d�
�

�
@C
@t
�

����
A
B

s
@C
@z

���������t��;z�z���
� 0; (61)

(iii) an equation for the conformal factor a��� of the
internal membrane metric:

@�a�
�@
@t

�������
AB
p

�@zA�������
AB
p

��������t��;z�z���

�
a����

@
@tC

A

��������t��;z�z���
�0:

(62)

Equation (61) tells that the (squared) sphere radius R2 �
C�z; t� must remain constant along the WILL-brane
trajectory.

C. Example: WILL membrane in Schwarzschild and
Reissner-Nordström black holes

Let us apply the results of Sec. V B for static spherically-
symmetric gravitational background in D � 4:

�ds�2 � �A�r��dt�2 � B�r��dr�2

� r2��d��2 � sin2����d�2�: (63)

Specifically we have

A�r� � B�1�r� � 1�
2GM
r

(64)

for Schwarzschild black hole,

A�r� � B�1�r� � 1�
2GM
r
�
Q2

r2 (65)

for Reissner-Nordström black hole,

A�r� � B�1�r� � 1� 	r2 (66)

for (anti-) de Sitter space, etc.
In the case of (63), Eqs. (60) and (61) reduce to

@r
@�
� �A�r�;

@r
@�i
� 0;

@r
@�
� 0 (67)

yielding:
-7
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r � r0 � const.; where A�r0� � 0: (68)

Further, Eq. (62) implies for the intrinsic WILL-membrane
metric:

k�ijk � c0e��=r0

�
1 0
0 sin2��1�

�
; (69)

where c0 is an arbitrary integration constant.
From (68) we conclude that the WILL membrane with

spherical topology (and with exponentially blowing-up/
deflating radius w.r.t. internal metric, see Eq. (69)) auto-
matically ‘‘sits’’ on (straddles) the event horizon of the
pertinent black hole in D � 4 embedding space-time. This
conforms with the well-known general property of closed
lightlike hypersurfaces inD � 4 (i.e., their section with the
hyper-plane t � const. being a compact 2-dimensional
manifold) which automatically serve as horizons [12]. On
the other hand, let us stress that our WILL-membrane
model (33) provides an explicit dynamical realization of
event horizons.
VI. COUPLED EINSTEIN-MAXWELL-WILL-
MEMBRANE SYSTEM: WILL MEMBRANE AS A

SOURCE FOR GRAVITY AND
ELECTROMAGNETISM

We can extend the results from the previous section to
the case of the self-consistent Einstein-Maxwell-WILL-
membrane system, i.e., we will consider the WILL mem-
brane as a dynamical material and electrically charged
source for gravity and electromagnetism. The relevant
action reads

S �
Z
d4x

��������
�G
p �

R�G�
16�GN

�
1

4
F ���A�F 	��A�G�	G��

�
� SWILL�brane;

(70)

where F���A� � @�A� � @�A� is the space-time
electromagnetic field strength, and SWILL�brane indicates
the WILL-membrane action coupled to the space-time
gauge field A�—either (46) or its dual (47).

The equations of motion for the WILL-membrane sub-
system are of the same form as Eqs. (50)–(52). The
Einstein-Maxwell equations of motion read

R�� �
1

2
G��R � 8�GN�T

�EM�
�� � T

�brane�
�� �; (71)

@��
��������
�G
p

G�	G��F 	�� � j
� � 0; (72)

where

T�EM�
�� � F �	F ��G

	� �G��
1

4
F �	F ��G

��G	�; (73)
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T�brane�
�� � �G�	G��

Z
d3�

��4��x� X������������
�G
p


 

��������
��
p

�ab@aX
	@bX

�; (74)

j� � q
Z
d3���4��x� X����"abcFbc@aX�: (75)

We find the following self-consistent spherically-
symmetric stationary solution for the coupled Einstein-
Maxwell-WILL-membrane system (70). For the Einstein
subsystem we have a solution:

�ds�2 � �A�r��dt�2 � A�1�r��dr�2

� r2��d��2 � sin2����d�2�; (76)

consisting of two different black holes with a common
event horizon:
(a) S
-8
chwarzschild black hole inside the horizon:

A�r� � A��r� � 1�
2GM1

r
;

for r < r0 � rhorizon � 2GM1:
(77)
(b) R
eissner-Norström black hole outside the horizon:

A�r� � A��r� � 1�
2GM2

r
�
GQ2

r2 ;

for r > r0 � rhorizon;
(78)

where Q2 � 8�q2r4
horizon � 128�q2G4M4

1; For the
Maxwell subsystem we have A1 � . . . �
AD�1 � 0 everywhere and
(c) C
oulomb field outside horizon:

A 0 �

���
2
p
qr2

horizon

r
; for r 	 r0 � rhorizon:

(79)
(d) N
o electric field inside horizon:

A0 �
���
2
p
qrhorizon � const.;

for r  r0 � rhorizon:

(80)
Using the same (synchronous) gauge choice (38) and
ansatz for the dual ‘‘gauge potential’’ (39), as well as
taking into account (79) and (80), the WILL-membrane
equations of motion (50)–(52) acquire the form (recall
�@aX@bX� � @aX�@bX�G��):

�@0X@0X� � 0; �@0X@iX� � 0; (81)

�@iX@jX� �
1

2
�ij�kl�@kX@lX� � 0; (82)

(these constraints are the same as in the absence of cou-
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pling to space-time gauge field (41) and (42));

@0�
��������
��2�
p

�kl�@kX@lX�� � 0; (83)

(once again the same equation as in the absence of cou-
pling to space-time gauge field (43));

~��3�X� � ��@0X�@0X� � �kl@kX�@lX���
�
��

� q
�kl�@kX@lX����

2
p



@0X
��@rA� � @�A��G

�� � 0: (84)

Here 
 � T0 �
���
2
p
qA0 with A0 as in (79) and (80) is the

variable brane tension coming from Eqs. (39) and (48);
X0 � t; X1 � r; X2 � �; X3 � ; and

e� �3� � �
1



��������
��2�

q @0�

��������
��2�

q
@0�

�
1



��������
��2�

q @i�

��������
��2�

q
�ij@j�: (85)

A self-consistent solution to Eqs. (81)–(84) reads

X0 � t � �; � � �1;  � �2; (86)

r��;�1;�2�� rhorizon� const.; A��rhorizon��0; (87)

i.e., the WILL membrane automatically positions itself on
the common event horizon of the pertinent black holes.
Furthermore, inserting (86) and (87) in the expression (74)
for the WILL-membrane energy-momentum tensor T�brane�

��

and using the simple expressions for the components of the
Ricci tensor corresponding to the metric (76) R0

0 � R1
1 �

� 1
2r2

@
@r �r

2 @
@r A�r�� [13], the Einstein Eqs. (71) entail the

following important matching conditions for the space-
time metric components (76) along the WILL-membrane
surface:

@
@r
A�

��������r�rhorizon

�
@
@r
A�

��������r�rhorizon

� �16�G
: (88)

The matching condition (88) corresponds to the so called
statically soldering conditions in the theory of lightlike thin
shell dynamics in general relativity in the case of ‘‘horizon
straddling’’ lightlike matter (first Ref. [4]). Here, condition
(88) yields relations between the parameters of the black
holes and the WILL membrane (q being its surface charge
density):

M2 � M1 � 32�q2G3M3
1 (89)

and for the brane tension 
:


 � T0 � 2q2rhorizon � q2GM1; i:e: T0 � 5q2GM1:

(90)

We would like to stress that the present WILL-brane
models provide a systematic dynamical description of
lightlike branes (as sources for both gravity and electro-
086011
magnetism) from first principles starting with concise
Weyl-conformally invariant actions (46) and (70). It is
interesting that out of the several possibilities discussed
in the first Ref. [4] for lightlike matter moving in a black
hole gravitational field only the ‘‘horizon straddling’’ is
selected by the WILL branes.
VII. WILL-MEMBRANE DYNAMICS IN KALUZA-
KLEIN PRODUCT SPACES

Here we consider WILL membrane moving in a general
product-space D � �d� 2�-dimensional gravitational
background Md 
 �2 with coordinates �x�; ym� (� �
0; 1; . . . ; d� 1, m � 1; 2). First we take the following sim-
ple form for the Riemannian metric (which is applicable
also to brane-world scenarios):

�ds�2 � f�y�g���x�dx�dx� � hmn�y�dymdyn: (91)

The metric g���x� on Md is of Lorentzian signature.
Furthermore, we assume that the WILL brane wraps
around the ‘‘internal’’ space �2 and choose the following
ansatz (recall � � �0) which uses the identity mapping
between the brane coordinates �1; �2 and the coordinates
Ym of the brane:

X� � X����; Ym � �m;

�mn � a���hmn��1; �2�:
(92)

Then the equations of motion and constraints (41)–(45)
reduce to

@�X�@�X�g���X� � 0;

1

a���
@��a���@�X

�� � @�X
�@�X

������g� � 0:
(93)

Here a��� is the conformal factor of the spacelike part of
the internal membrane metric (last Eq. (92)) and �����g� is
the Christoffel connection for the noncompact space metric
g���x�. Also, let us note the that the overall conformal
factor f�u� of the metric on Md (91) drops out completely.

Eqs. (93) are of the same form as the equations of motion
for a massless point particle with a worldline ‘‘einbein’’
e � a�1 moving in Md. In other words, in this situation
we deal with a membrane living in the extra internal
dimensions �2 and moving as a whole with the speed of
light in ‘‘ordinary’’ space-time Md—its motion is indis-
tinguishable from the dynamics of a regular massless point
particle w.r.t. the noncompact projected world Md. Notice,
however, that although being massless, the particlelike
brane mode acquires nontrivial Kaluza-Klein quantum
numbers due to the WILL-brane winding of the extra
compact dimensions—a very peculiar situation in the
context of Kaluza-Klein theories.

Now, we take more complicated form for the product-
space Riemannian metric:

�ds�2 � g���x�dx�dx� � v�x�hmn�y�dymdyn; (94)
-9
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where we allow for a variable size (squared) v�x� of the
internal compact dimensions. Employing the ansatz:

X� � X���; �1; �2�; Ym � �m;

�mn � a���hmn��
1; �2�

(95)

the constraints and equations of motion (41)–(45) acquire
the following form:

�@0X@0X� � 0; �@0X@iX� � 0;

�@iX@jX� �
1

2
hijh

kl�@kX@lX� � 0;
(96)

b��3�X� � �
�@0X

�@0X
� �

1

a
hkl@kX

�@lX
�
�
�����g�

�
1

a
g��

@v
@x�

��������x�X
� 0; (97)

with

b� �3� � �
1

a
@0�a@0� �

1���
h
p @i�

���
h
p
hij@j�; (98)

@iX
� @v
@x�

��������x�X
� 0: (99)

Let us also note that Eq. (43) (the remnant of the equations
of motion for the dual gauge potential u being a conse-
quence of the constraints and the rest of the equations of
motion) upon using the ansatz (95) assumes the form:

@0�h
ij�@iX@jX� � 2v�X�� � 0: (100)

In what follows we will study the particlelike mode
dynamics of the WILL membrane, i.e., we will use the
ansatz (92). Then Eqs. (96)–(99) reduce to

@0X�g���X�@0X� � 0; (101)

1

a
@0�a@0X

�� � @0X
�@0X

������g� �
1

a
g��

@v
@x�

��������x�X
� 0:

(102)

Let us particularly stress that Eqs. (101) and (102) describe
massless particlelike dynamics in a ‘‘potential’’ v�X� (the
space-dependent size-squared of the extra compact dimen-
sions) which is an essential new feature stemming from the
WILL-membrane model. These equations cannot be de-
rived from a reparametrization-invariant (massless) point-
particle-like action.

For a static spherically-symmetric (w.r.t. noncompact
dimensions) background:

�ds�2 � �A�r��dt�2 � B�r��dr�2 � C�r���d��2 � sin2���


 �d�2� � v�r�hmn�y�dymdyn; (103)

and identifying as usual X0 � t � � we obtain from (101)
and (102):
086011
(a) A
-10
s a consequence of Eqs. (101) and (102) we have

@0X�
@v
@x�

��������x�X
� 0; (104)

which yields r � r0 � const. (� independent).

(b) T
he equation of motion (102) for � � 0 yields a �

a0 � const. (� independent). Recall from last
Eq. (92) that a has the meaning of a size squared
of the world surface (at fixed proper time) of the
WILL brane w.r.t. internal world-volume metric
�ab.
(c) T
aking the above relations into account, the equa-
tion of motion (102) for � � r yields a purely func-
tional equation:�

1

a0

@v
@r
�

1

2
A
@
@r

ln
C
A

���������r�r0

� 0; (105)

which determines a set of allowed constant values
for r � r0 � r�a0� depending on the explicit form
of the background (103) and parametrically depend-
ing on a0.
(d) F
inally, the lightlike constraint (first Eq. (101)) and
the equations of motion (102) for the spacelike
noncompact coordinates X � �X1; X2; X3� (recall

r �
����������������������������������������������
�X1�2 � �X2�2 � �X3�2

p
� r0) acquire the

form:

_X 2 �
A
C
r2

��������r�r0

; �X�
A
C

��������r�r0

X � 0: (106)

Here and below the scalar products of 3 vectors are
understood w.r.t. flat metric.
Obviously, the solution to (106) are as follows:

X � r0�n�1� cos�!�� � n�2� sin�!���; !2 �
A
C

��������r�r0

;

(107)

where r0 is determined from Eq. (105) and n�1;2� are two
constant mutually orthogonal unit 3 vectors: �n�1��2 �
�n�2��2 � 1, n�1�:n�2� � 0. In other words, the projection
of the WILL membrane on the noncompact space-time
rotates with the speed of light in a two-dimensional plane
defined by the unit vectors n�1;2�, traversing a circle with
radius r0 determined from Eq. (105) with angular velocity
! given by the second relation (107).

Solution (107) describes nontrivial massless mode dy-
namics with energy E and angular momentum jMj (recall

 � T0 (40)):

E � T0a0A�r0��; jMj � T0a0

����������������������
A�r0�C�r0�

q
�;

(108)

� being the volume of the compact internal space, which
implies the relation:

E � jMj!�r0�: (109)
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(recall!�r0� �
�������������������������
A�r0�=C�r0�

p
� (107)). Equations (108) fol-

low straightforwardly from the expressions for the Noether
conserved currents corresponding to invariance of the ac-
tion (33) with external metric background given by (103)
under translation of X0 � t and  (external space-time
spherical angle).

Following Refs. [14,15], we have the following explicit
solution of the Einstein equations in the case of two extra
dimensions for the metric (103):

A�r� �
�
�r� 1

�r� 1

�
2p�q

;

C�r� � r2B�r� �
1

�4r2

��r� 1�2�p�1��q

��r� 1�2�p�1��q
; v�r�

�

�
�r� 1

�r� 1

�
q
;

(110)

whereas the compact internal space �2 is a torus with
hmn�y� � �mn (therefore, the world surface of the WILL
membrane is similarly assumed to have toroidal topology).
In (110) � is arbitrary positive integration constant of mass
dimension 1, p and q are free numerical parameters subject
to the relation p2 � 1

2 q
2 � 1, and the resulting metric is

well defined in the region �r > 1.
Inserting the expressions (110) into Eq. (105) we obtain

0 �
4q
a0

��r0 � 1�q�1

��r0 � 1�q�1 �

�
�r0 � 1

�r0 � 1

�
p�q

�
�4p� 2�

�r0 � 1

�
2

�r0
�
�4p� 2�

�r0 � 1

�
; (111)

determining allowed values of the radius r0 � r0�a0� of the
planar circular orbits as a function of a0 (recall that a0 is
strictly positive free parameter—the size squared of the
WILL membrane w.r.t. its internal world-volume metric,
cf. Eq. (92)). From Eq. (111) and taking into account the
constraints on the parameters in (110), we have:���p
(a) F
2For
to the
Schwa
or 0< q  1= 2 and 1
2  p  1� 1

2q
2 the al-

lowed values of the radius r0�a0� of the planar
circular orbits lie in the interval �1� ;

2
� 


�p�
��������������������
p2 � 1=4

p
�.���p
(b) F
or �1= 2  q < 0 and 1
2  p  1� 1

2q
2 the al-

lowed values of r0�a0� are r0�a0� 	
2
� 


�p�
��������������������
p2 � 1=4

p
�; we have in this case r0�a0� ���!

1 for a0 ! 0, and r0�a0� ���! 2
� �p�

��������������������
p2 � 1=4

p
�

for a0 ! 1.

Let us note that in the case q > 0, (110) also yields the

interior solution for the ‘‘gravitational bags’’ [16] (the
latter similarly require p > 1

2 )2.
For both situations above one can easily show that the

allowed values for the angular velocity (cf. the definition in
‘‘gravitational bags’’ [16] the exterior solution, matched
interior one through a regular domain wall, is a

rzschild metric.
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Eq. (107)):

!�r0� � �2r0
��r0 � 1�2p�1

��r0 � 1�2p�1 (112)

lie in a finite interval between 0 and !max:

!max�
�
2

�p�
�������������������
p2�1=4

p
��p�1=2�

�������������������
p2�1=4

p
�2p�1

�p�1=2�
�������������������
p2�1=4

p
�2p�1

:

(113)

Let us note that in the case v � const. (constant size of
extra dimensions) the free scale parameter a0 disappears in
Eq. (105) leading to a qualitatively different situation. For
instance, in the case of Schwarzschild metric on the non-
compact space, i.e., A�r� � B�1�r� � 1� 2GM=r,C�r� �
r2; v � const. in (103), Eq. (105) is satisfied for only two
special values of r [17]: r0 � 2GM (massless particle
‘‘sitting’’ on the horizon) and r0 � 3GM (massless particle
on an unstable circular orbit). On the other hand, for
variable size of the extra dimensions ( @v@r � 0) a continuous
range of values for the ‘‘radius’’ of the planar circular
orbits is available corresponding to the solutions r �
r0�a0� of Eq. (105).

Let us particularly emphasize the fact that, although the
WILL brane is wrapping the extra (compact) dimensions in
a topologically nontrivial way (cf. second Eq. (95)), its
modes remain massless from the projected noncompact
space-time point of view. This is a new phenomenon
from the point of view of Kaluza-Klein theories: here we
have particlelike membrane modes, which acquire nonzero
quantum numbers due to nontrivial winding, while at the
same time these particlelike modes remain massless. In
contrast, one should recall that in ordinary Kaluza-Klein
theory (for reviews, see [18]), nontrivial dependence on the
extra dimensions is possible for point particles or even
standard strings and branes only at a very high-energy
cost (either by momentum modes or winding modes),
which implies a very high mass from the projected non-
compact space-time point of view.
VIII. CONCLUSIONS AND OUTLOOK

In the present paper we have discussed in detail a
completely new type of p branes. The use of a modified
non-Riemannian volume form (integration measure) in
their Lagrangian actions was of crucial importance. Next,
formulating acceptable p-brane dynamics naturally re-
quires the introduction of additional world-volume gauge
fields. Employing a square-root Maxwell-type action for
auxiliary world-volume gauge field was most instrumental
for achieving a consistent p-brane theory which is mani-
festly Weyl-conformally invariant for any p and, further-
more, for any even p (odd-dimensional world volume) it
describes intrinsically lightlike p branes. Remarkably, the
brane tension becomes now a gauge-dependent concept—
-11
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it appears as a composite field transforming nontrivially
under Weyl-conformal transformations. Unlike previous
Weyl-invariant reformulations of the standard Weyl non-
invariant Nambu-Goto p branes (which preserve the physi-
cal content of the Nambu-Goto branes and, therefore,
describe massive brane modes), the presently discussed
new class of Weyl-invariant p branes for p� 1 � odd
describes genuine massless lightlike branes.

Weyl-invariant lightlike p branes (WILL branes) offer a
broad variety of interesting physical applications, most
notably in the context of black hole physics and Kaluza-
Klein theories. In the case of a WILL membrane moving as
a test brane in a gravitational black hole background we
have seen that it positions itself automatically on the event
horizon. Furthermore, we studied a self-consistent solution
of the coupled Einstein-Maxwell-WILL-membrane system
where the WILL membrane appears as a source for both
gravity and electromagnetism. This self-consistent solu-
tion has the WILL membrane sitting at (‘‘straddling’’) the
common event horizon of a Schwarzschild (in the interior)
and Reissner-Nordström (in the exterior) black hole solu-
tions. This is an indication that the WILL-membrane
model indeed provides a plausible explicit dynamical real-
ization of the so called ‘‘membrane paradigm’’ in black
hole physics [2]. The quantization of the WILL-membrane
dynamics under these circumstances may be very much
related to the quantization of the horizon degrees of free-
dom. Indeed, the WILL membrane presents a remarkable
resemblance to the stringlike objects introduced by ‘t
Hooft [19] to characterize the horizon degrees of freedom.

In the context of Kaluza-Klein theories the WILL branes
appear also to play a very interesting role. Indeed, we have
found solutions for the WILL membrane moving in higher-
dimensional Kaluza-Klein-type space-times which de-
scribe the dynamics of massless particlelike brane modes
even though the membrane itself is wrapping the extra
compact dimensions and, therefore, acquires nontrivial
Kaluza-Klein charges—a situation inaccessible in the con-
text of standard Kaluza-Klein theories. When the size of
the extra compact dimensions has a nontrivial space de-
pendence like in some self-consistent solutions of higher-
dimensional Einstein equations [14,15], the behavior of the
massless particlelike brane mode solutions is quite inter-
esting from the point of view of the noncompact D � 4
space-time point of view. These massless brane modes are
trapped on finite planar circular orbits with linear depen-
dence between energy and angular momentum. The pa-
086011
rameters of the metric on the noncompact part of the
Kaluza-Klein space-time dictate that the allowed values
of the angular velocity lie in a finite interval.

It is essential to note that the above massless particle-
like dynamics is a special feature due to its WILL brane
(31) origin. It cannot be derived neither from a
reparametrization-invariant point-particle action nor by
zero-mode reduction of a Nambu-Goto-type brane action.

There are various physically interesting directions for
further systematic study of the properties and implications
of the new class of Weyl-conformally invariant branes
discussed above, such as: quantization (Weyl-conformal
anomaly and critical dimensions); supersymmetric gener-
alization; possible relevance for the open string dynamics
(similar to the role played by Dirichlet- (Dp-)branes);
WILL-brane dynamics in more complicated gravitational
black hole backgrounds (e.g., Kerr-Newman); WILL-brane
dynamics in more complicated Kaluza-Klein-type space-
times, including more complex winding of the extra di-
mensions. To this end let us note that there exist physically
interesting solutions of higher-dimensional Einstein equa-
tions—‘‘gravitational bags’’ [16] and ‘‘dimension bubble’’
solutions [20], where the presence of a domain wall im-
plies big gradient for the size squared v�r� of the extra
dimensions (cf. Eq. (105). Thus, it would be very interest-
ing to study WILL-brane dynamics in such Kaluza-Klein
backgrounds.
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